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Abstract—Binaphthyl-modified spiro-type symmetrical phase-transfer catalysts possessing 4,4’,6,6'-tetraaryl substituents are shown
to exhibit high asymmetric induction in asymmetric alkylation of benzophenone imine glycine terz-butyl ester under ordinary
phase-transfer conditions. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

We recently reported the design of binaphthyl-modified,
spiro-type chiral ammonium salts of type 1 and their
application to the catalytic asymmetric synthesis of
various a-alkyl- and a,a-dialkyl-a-amino acids in addi-
tion to B-hydroxy-o-amino acids.' In this part of the
study, introduction of 3,3'-diaryl substituents to the
parent symmetrical ammonium bromide 1a was found to
be highly effective for obtaining higher enantioselectivity.
For example, in a typical asymmetric benzylation of
benzophenone imine glycine fert-butyl ester, 1 mol% of
unsymmetrical catalyst 1b and 1c¢ afforded 89% ee (81%
yield) and 96% ee (95% yield), respectively, compared to
the lower enantioselectivity (79% ee) by using the parent
symmetrical 1a.?* From the viewpoint of catalyst design,
such an unsymmetrical catalyst 1 requires the indepen-
dent synthesis of both right-hand and left-hand sides of
the molecules as illustrated in Scheme 1. Obviously,
preparation of symmetrical ammonium salts of type 2 has
a distinct advantage over unsymmetrical 1 (Ar#H),
because synthesis of only one side of the symmetrical
catalyst 2 is required. Unfortunately, however, attempted
synthesis of symmetrical bis(3,3’-diphenylbinaphthyl-
modified) ammnonium salt was found to be totally
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unsuccessful due to the steric repulsion of such tetra-
phenyl substituents. Accordingly, we prepared symmetri-
cal 4,4'-diaryl-substituted ammonium salts 3 by mixing
2 equiv. of dibromide 4 and ammonia, and evaluated
their chiral efficiency in the asymmetric alkylation of
glycine derivative.?

2. Results

The requisite catalysts 3a and 3b can be prepared as
outlined in Schemes 2 and 3. Thus, the known (S)-
4.4’ 6,6'-tetraphenylbinaphthol 5* is transformed with
Tf,0 and Et;N to the corresponding (S)-bis-triflate 6
which is susceptible to the Ni-catalyzed cross coupling
with MeMgl and catalytic NiCl,(dppp) to furnish (S)-
bis-methyl derivative 7. Radical bromination of 7 is
effected with NBS and catalytic AIBN as a radical
initiator to afford (S)-dibromide 4a. Treatment of 4a (2
equiv.) with aqueous ammonia in CH;CN directly gives
the desired spiro-type (S,S)-ammonium bromide 3a.

We also prepared (5)-4,4'-diphenylbinaphthyl derivative
3b in order to examine the substituent effects of 6,6'-
diphenyl moieties (Scheme 3). The known (S)-4,4-
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Scheme 2. Reagents and conditions: (a) Tf,O (3 equiv.), Et;N (3 equiv.), CH,Cl,, —78°C to rt; (b) MeMgl (4 equiv.), NiCl,(dppp)
(5 mol%), ether reflux; (c) NBS (2.2 equiv.), AIBN (10 mol%), benzene reflux; (d) 28% aq. NH; (4 equiv.), CH,CN.
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Scheme 3. Reagents and conditions: (a) PAB(OH), (2.4 equiv.), Pd(PPh;), (3 mol%), aq. K,CO; (2 M), THF reflux; (b) HCO,NH,
(16 equiv.), Pd/C (5§ mol%), MeOCH,CH,OH, 60°C; (c) BBr; (2 equiv.), CH,Cl,, 0°C; (d) Tf,O (3 equiv.), Et;N (3 equiv.),
CH,Cl,, —78°C to rt; (¢) MeMgl (4 equiv.), NiCl,(dppp) (5 mol%), ether reflux; (f) NBS (2.2 equiv.), AIBN (10 mol%), benzene
reflux; (g) 28% aq. NH; (4 equiv.), CH;CN.
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Scheme 4. Reagents and conditions: (a) Pd(OAc), (15 mol%), dppp (16.5 mol%), i-Pr,NEt (5 equiv.), CO, MeOH/DMSO, 80°C;
(b) LiAlH, (2 equiv.), THF, 0°C; (c) BBr; (2 equiv.), CH,Cl,, 0°C; (d) 28% aq. NH; (4 equiv.), CH;CN.

Table 1. Catalytic enantioselective phase-transfer alkylation®

chiral catalyst

Ph 0 (1 mol%) Ph
>= N\)]\ t * RX =N t
PH OBu toluene PH ~ "OBu
50% KOH aq T
14 o 15
0°C
Entry Catalyst RX Conditions (°C, h) Yield (%)° % ee® (config.)¢
1 3a PhCH,Br 0, 3.5 85 92 (R)
2 3b 0, 3.5 82 90 (R)
3 3c 0, 24 87 97 (R)
4 3d 0,6 86 96 (R)
5 3a ANBT 0,1 81 91 (R)
6 3b 0, 2 83 87 (R)
7 3c 0, 20 76 93 (R)
8 3d 0,5 91 92 (R)
9 3a — Br 0,2 90 94 (R)
10 3b //\ 0,4 92 94 (R)
11 3c 0, 20 83 94 (R)
12 3d 0,7 56 95 (R)
13 3a Br 0.3 88 90 (R)
14 3c 0, 24 91 95 (R)
F
15 3a CH,CH,I* 0, 24 12 88 (R)

# Unless otherwise specified, the reaction was carried out with 1.2 equiv. of RX in the presence of 1 mol% of 3 in 50% aq. KOH/toluene (volume

ratio=1:3) under the given reaction conditions.
b Isolated yield.

¢ Enantiopurity of 15 was determined by HPLC analysis of the alkylated imine using a chiral column (DAICEL Chiralcel OD) with

hexane-isopropanol as solvent.

4 Absolute configuration was determined by comparison of the HPLC retention time with the authentic sample independently synthesized by the

reported procedure.??
¢ Use of 5 equiv. of alkyl halide.

dibromo-6,6'-dichlorobinaphthyl ether 8° is selectively
converted to (S)-4,4-diphenyl-6,6'-dichlorobinaphthyl
ether 9 by Suzuki-Miyaura coupling with PhB(OH),,
aqueous K,CO; and catalytic Pd(PPh,),, and 6,6-
dichloro groups are then removed by catalytic hydro-
genation with Pd/C and ammonium formate to furnish
(S)-4,4'-diphenylbinaphthyl ether 10 which is cleaved
with BBr; to furnish (5)-4,4’-diphenylbinaphthol 11 in

79% overall yield. Transformation of 11 to 3b via 12,
13, and 4b was accomplished in a similar manner as
described above.

The synthetic potential of these catalysts 3a and 3b was
evaluated by the asymmetric phase-transfer alkyl-
ation of benzophenone imine glycine rerz-butyl ester 14
under ordinary phase-transfer conditions. Thus,
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treatment of protected glycine derivative 14 with benz-
yl bromide (1.2 equiv.) and 50% aqueous KOH/toluene
(volume ratio = 1:3) under the influence of 1 mol% 3a at
0°C for 3.5 h resulted in formation of a-phenylalanine
derivative 15 (R=CH,Ph) in 85% yield with 92% ee.®
When we use 4,4'-diphenylbinaphthyl derivative 3b,
similar reactivity and selectivity (82% yield; 90% ee) was
observed in the asymmetric benzylation of glycine deriva-
tive 14.

Since the observed enantioselectivity is not excellent with
3a or 3b, we then prepared 4,4',6,6'-tetrakis(3,5-
diphenylphenyl)binaphthyl analogue 3¢ as shown in
Scheme 4.7 Thus, (S)-bis-triflate 16 (Ar=3,5-
diphenylphenyl) can be prepared in a similar manner as
described in Scheme 2 and Ref. 4, and then converted by
catalytic Pd(OAc),, dppp, i-Pr,NEt, CO (gas), and
MeOH to the corresponding (S)-dicarboxylic acid methyl
ester 17, which is further reduced with LiAlH, to give
(S)-diol 18. Bromination of 16 with BBr; afforded
(S)-dibromide 4¢ which is reacted with aqueous ammonia
in CH;CN to furnish the desired spiro-type (S,S)-ammo-
nium bromide 3c. This carbonylation/reduction route is
also applicable to the synthesis of 3d.

The asymmetric benzylation of glycine derivative 14 was
effected with new catalysts 3¢ and 3d to furnish the
alkylation product 15 (R = CH,Ph) with higher enantiose-
lectivity (96-97% ee) under similar phase-transfer condi-
tions. Other selected examples are also included in Table
1.

In conclusion, we have developed several new and efficient
catalysts 3a—d, via a simplified catalyst preparation, for
effecting asymmetric phase-transfer alkylation of glycine
derivative 14.
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The catalyst 3a was recovered in ~ 50% yield, suggesting the
partial decomposition of 3a under the phase-transfer condi-
tions. In contrast, catalyst 1 having 3,3-diaryl substituents
is stable and gives higher recovery yield than 3. See Ref. 2c.
Because of the difficulty for 4,4',6,6-tetrakis(3,5-
diphenylphenyl)binaphthyl analogue in radical bromination
as shown in Scheme 2, we developed a new synthetic route
to 4c as indicated in Scheme 4.
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