

Tetrahedron: Asymmetry 14 (2003) 1599–1602

TETRAHEDRON: ASYMMETRY

Symmetrical 4,4',6,6'-tetraarylbinaphthyl-substituted ammonium bromide as a new, chiral phase-transfer catalyst

Takuya Hashimoto, Youhei Tanaka and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Received 21 February 2003; accepted 13 March 2003

Abstract—Binaphthyl-modified spiro-type symmetrical phase-transfer catalysts possessing 4,4',6,6'-tetraaryl substituents are shown to exhibit high asymmetric induction in asymmetric alkylation of benzophenone imine glycine *tert*-butyl ester under ordinary phase-transfer conditions. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

We recently reported the design of binaphthyl-modified, spiro-type chiral ammonium salts of type 1 and their application to the catalytic asymmetric synthesis of various α -alkyl- and α , α -dialkyl- α -amino acids in addition to β -hydroxy- α -amino acids.^{1,2} In this part of the study, introduction of 3,3'-diaryl substituents to the parent symmetrical ammonium bromide 1a was found to be highly effective for obtaining higher enantioselectivity. For example, in a typical asymmetric benzylation of benzophenone imine glycine *tert*-butyl ester, 1 mol% of unsymmetrical catalyst **1b** and **1c** afforded 89% ee (81%) yield) and 96% ee (95% yield), respectively, compared to the lower enantioselectivity (79% ee) by using the parent symmetrical 1a.^{2a} From the viewpoint of catalyst design, such an unsymmetrical catalyst 1 requires the independent synthesis of both right-hand and left-hand sides of the molecules as illustrated in Scheme 1. Obviously, preparation of symmetrical ammonium salts of type 2 has a distinct advantage over unsymmetrical 1 (Ar \neq H), because synthesis of only one side of the symmetrical catalyst 2 is required. Unfortunately, however, attempted synthesis of symmetrical bis(3,3'-diphenylbinaphthylmodified) ammnonium salt was found to be totally

unsuccessful due to the steric repulsion of such tetraphenyl substituents. Accordingly, we prepared symmetrical 4,4'-diaryl-substituted ammonium salts **3** by mixing 2 equiv. of dibromide **4** and ammonia, and evaluated their chiral efficiency in the asymmetric alkylation of glycine derivative.³

2. Results

The requisite catalysts **3a** and **3b** can be prepared as outlined in Schemes 2 and 3. Thus, the known (*S*)-4,4',6,6'-tetraphenylbinaphthol **5**⁴ is transformed with Tf₂O and Et₃N to the corresponding (*S*)-bis-triflate **6** which is susceptible to the Ni-catalyzed cross coupling with MeMgI and catalytic NiCl₂(dppp) to furnish (*S*)bis-methyl derivative **7**. Radical bromination of **7** is effected with NBS and catalytic AIBN as a radical initiator to afford (*S*)-dibromide **4a**. Treatment of **4a** (2 equiv.) with aqueous ammonia in CH₃CN directly gives the desired spiro-type (*S*,*S*)-ammonium bromide **3a**.

We also prepared (S)-4,4'-diphenylbinaphthyl derivative **3b** in order to examine the substituent effects of 6,6'diphenyl moieties (Scheme 3). The known (S)-4,4'-

1a (Ar= H), **b** (Ar= Ph), **c** (Ar= β-Np)

^{*} Corresponding author. E-mail: maruoka@kuchem.kyoto-u.ac.jp

^{0957-4166/03/} $\$ - see front matter $\$ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0957-4166(03)00271-4

3c (Ar = Ar' = 3,5-diphenylphenyl) **3d** (Ar = 3,5-diphenylphenyl; Ar' = H)

Scheme 1.

Scheme 2. Reagents and conditions: (a) Tf_2O (3 equiv.), Et_3N (3 equiv.), CH_2Cl_2 , -78^\circC to rt; (b) MeMgI (4 equiv.), $NiCl_2(dppp)$ (5 mol%), ether reflux; (c) NBS (2.2 equiv.), AIBN (10 mol%), benzene reflux; (d) 28% aq. NH_3 (4 equiv.), CH_3CN .

Scheme 3. *Reagents and conditions*: (a) PhB(OH)₂ (2.4 equiv.), Pd(PPh₃)₄ (3 mol%), aq. K₂CO₃ (2 M), THF reflux; (b) HCO₂NH₄ (16 equiv.), Pd/C (5 mol%), MeOCH₂CH₂OH, 60°C; (c) BBr₃ (2 equiv.), CH₂Cl₂, 0°C; (d) Tf₂O (3 equiv.), Et₃N (3 equiv.), CH₂Cl₂, -78°C to rt; (e) MeMgI (4 equiv.), NiCl₂(dppp) (5 mol%), ether reflux; (f) NBS (2.2 equiv.), AIBN (10 mol%), benzene reflux; (g) 28% aq. NH₃ (4 equiv.), CH₃CN.

Scheme 4. Reagents and conditions: (a) $Pd(OAc)_2$ (15 mol%), dppp (16.5 mol%), *i*-Pr₂NEt (5 equiv.), CO, MeOH/DMSO, 80°C; (b) LiAlH₄ (2 equiv.), THF, 0°C; (c) BBr₃ (2 equiv.), CH₂Cl₂, 0°C; (d) 28% aq. NH₃ (4 equiv.), CH₃CN.

Table 1. Catalytic enantioselective phase-transfer alkylation^a

	chiral catalyst (1 mol%)	Ph O ↓N ↓
	toluene	
14	50% KOH aq 0 °C	R ^Ĥ 15

Entry	Catalyst	RX	Conditions (°C, h)	Yield (%) ^b	% ee ^c (config.) ^d
1	3a	PhCH ₂ Br	0, 3.5	85	92 (<i>R</i>)
2	3b		0, 3.5	82	90 (R)
3	3c		0, 24	87	97 (R)
4	3d		0, 6	86	96 (<i>R</i>)
5	3a	Br	0, 1	81	91 (<i>R</i>)
6	3b	-	0, 2	83	87 (R)
7	3c		0, 20	76	93 (<i>R</i>)
8	3d		0, 5	91	92 (<i>R</i>)
9	3a	Br	0, 2	90	94 (<i>R</i>)
10	3b		0, 4	92	94 (R)
11	3c		0, 20	83	94 (R)
12	3d		0, 7	56	95 (<i>R</i>)
13	3a		0, 3	88	90 (<i>R</i>)
14	3c		0, 24	91	95 (R)
15	3a	F CH ₃ CH ₂ I ^e	0, 24	12	88 (R)

^a Unless otherwise specified, the reaction was carried out with 1.2 equiv. of RX in the presence of 1 mol% of 3 in 50% aq. KOH/toluene (volume ratio = 1:3) under the given reaction conditions.

^b Isolated yield.

^c Enantiopurity of **15** was determined by HPLC analysis of the alkylated imine using a chiral column (DAICEL Chiralcel OD) with hexane-isopropanol as solvent.

^d Absolute configuration was determined by comparison of the HPLC retention time with the authentic sample independently synthesized by the reported procedure.^{2a}

e Use of 5 equiv. of alkyl halide.

dibromo-6,6'-dichlorobinaphthyl ether 8^5 is selectively converted to (S)-4,4'-diphenyl-6,6'-dichlorobinaphthyl ether 9 by Suzuki–Miyaura coupling with PhB(OH)₂, aqueous K₂CO₃ and catalytic Pd(PPh₃)₄, and 6,6'dichloro groups are then removed by catalytic hydrogenation with Pd/C and ammonium formate to furnish (S)-4,4'-diphenylbinaphthyl ether 10 which is cleaved with BBr₃ to furnish (S)-4,4'-diphenylbinaphthol 11 in 79% overall yield. Transformation of 11 to 3b via 12, 13, and 4b was accomplished in a similar manner as described above.

The synthetic potential of these catalysts **3a** and **3b** was evaluated by the asymmetric phase-transfer alkylation of benzophenone imine glycine *tert*-butyl ester **14** under ordinary phase-transfer conditions. Thus, treatment of protected glycine derivative **14** with benzyl bromide (1.2 equiv.) and 50% aqueous KOH/toluene (volume ratio = 1:3) under the influence of 1 mol% **3a** at 0°C for 3.5 h resulted in formation of α -phenylalanine derivative **15** (R = CH₂Ph) in 85% yield with 92% ee.⁶ When we use 4,4'-diphenylbinaphthyl derivative **3b**, similar reactivity and selectivity (82% yield; 90% ee) was observed in the asymmetric benzylation of glycine derivative **14**.

Since the observed enantioselectivity is not excellent with **3a** or **3b**, we then prepared 4,4',6,6'-tetrakis(3,5diphenylphenyl)binaphthyl analogue **3c** as shown in Scheme 4.7 Thus, (S)-bis-triflate **16** (Ar = 3,5diphenylphenyl) can be prepared in a similar manner as described in Scheme 2 and Ref. 4, and then converted by catalytic Pd(OAc)₂, dppp, *i*-Pr₂NEt, CO (gas), and MeOH to the corresponding (S)-dicarboxylic acid methyl ester **17**, which is further reduced with LiAlH₄ to give (S)-diol **18**. Bromination of **16** with BBr₃ afforded (S)-dibromide **4c** which is reacted with aqueous ammonia in CH₃CN to furnish the desired spiro-type (S,S)-ammonium bromide **3c**. This carbonylation/reduction route is also applicable to the synthesis of **3d**.

The asymmetric benzylation of glycine derivative 14 was effected with new catalysts 3c and 3d to furnish the alkylation product $15 (R = CH_2Ph)$ with higher enantiose-lectivity (96–97% ee) under similar phase-transfer conditions. Other selected examples are also included in Table 1.

In conclusion, we have developed several new and efficient catalysts **3a–d**, via a simplified catalyst preparation, for effecting asymmetric phase-transfer alkylation of glycine derivative **14**.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 13853003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- For recent reviews on chiral phase-transfer catalysis, see: (a) O'Donnell, M. J. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; Verlag Chemie: New York, 1993; Chapter 8; (b) Shioiri, T. In *Handbook of Phase-Transfer Catalysis*; Sasson, Y.; Neumann, R., Eds.; Blackie Academic & Professional: London, 1997; Chapter 14; (c) O'Donnell, M. J. *Phases—The Sachem Phase Transfer Catalysis Review* 1998, Issue 4, p. 5; (d) O'Donnell, M. J. *Phases—The Sachem Phase Transfer Catalysis Review* 1999, Issue 5, p. 5; (e) Shioiri, T.; Arai, S. In *Stimulating Concepts in Chemistry*, Vogtle, F.; Stoddart, J. F.; Shibasaki, M., Eds.; Wiley-VCH: Weinheim, 2000; p. 123; (f) O'Donnell, M. J. *Aldrichim. Acta* 2001, *34*, 3.
- (a) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519; (b) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228; (c) Ooi, T.; Kameda, M.; Tannai, H.; Maruoka, K. Tetrahedron Lett. 2000, 41, 8339; (d) Ooi, T.; Doda, K.; Maruoka, K. Org. Lett. 2001, 3, 1273; (e) Maruoka, K. J. Fluorine Chem. 2001, 112, 95; (f) Ooi, T.; Takeuchi, M.; Maruoka, K. Synthesis 2001, 1716; (g) Ooi, T.; Uematsu, Y.; Maruoka, K. Adv. Synth. Catal. 2002, 344, 288; (h) Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 1621; (i) Ooi, T.; Takahashi, M.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2002, 124, 7640; (j) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc., in press.
- Recently, C₂-symmetric guanidine based and tartratederived chiral phase-transfer catalysts have been developed. See: (a) Kita, T.; Georgieva, A.; Hashimoto, U.; Nakata, T.; Nagasawa, K. Angew. Chem., Int. Ed. 2002, 41, 2832; (b) Arai, S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002, 43, 9535; (c) Shibuguchi, T.; Fukuta, Y.; Akachi, Y.; Sekine, A.; Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539.
- 4. Gong, L.-Z.; Hu, Q.-S.; Pu, L. J. Org. Chem. 2001, 66, 2358.
- 5. Cui, Y.; Evans, O. R.; Ngo, H. L.; White, P. S.; Lin, W. Angew. Chem., Int. Ed. 2002, 41, 1159.
- The catalyst 3a was recovered in ~50% yield, suggesting the partial decomposition of 3a under the phase-transfer conditions. In contrast, catalyst 1 having 3,3-diaryl substituents is stable and gives higher recovery yield than 3. See Ref. 2c.
- 7. Because of the difficulty for 4,4',6,6'-tetrakis(3,5diphenylphenyl)binaphthyl analogue in radical bromination as shown in Scheme 2, we developed a new synthetic route to **4c** as indicated in Scheme 4.